if(!file.exists("data")) {
dir.create("data")}
fileUrl<-"https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl,destfile="./data/cameras.csv",method="curl")
list.files("./data")
cameraData<-read.table("./data/cameras.csv",sep=",",header=TRUE)
head(cameraData)
library(xlsx)
cameraData<-read.xlsx("./data/cameras.xlsx",sheetIndex=1,header=TRUE)
head(cameraData)
## Reading specific rows and columns
colIndex<-2:3
rowIndex<-1:4
cameraDataSubset<-read.xlsx("./data/cameras.xlsx",sheetIndex=1,colIndex=colIndex,rowIndex=rowIndex)
cameraDataSubset
library(XML)
fileUrl<-"http://www.w3schools.com/xml/simple.xml"
doc<-xmlTreeParse(fileUrl,useInternal=TRUE)
rootNode<-xmlRoot(doc)
xmlName(rootNode) #查看文件标题
names(rootNode)#查看所有子主题
rootNode[[1]] #查看子主题第一级
rootNode[[1]][[1]] #查看子主题第一级的第一个Element
xmlSApply(rootNode,xmlValue) #查看所有Element的Value
# /nodeTop level node
# //nodeNode at any level
# node[@attr-name]Node with an attribute name
# node[@attr-name='bob']Node with attribute name attr-name='bob'
# Information from:http://www.stat.berkeley.edu/~statcur/Workshop2/Presentations/XML.pdf
xpathSApply(rootNode,"//name",xmlValue)
xpathSApply(rootNode,"//price",xmlValue)
fileUrl <- "http://espn.go.com/nfl/team/_/name/bal/baltimore-ravens"
doc <- htmlTreeParse(fileUrl,useInternal=TRUE)
scores <- xpathSApply(doc,"//li[@class='score']",xmlValue)
teams <- xpathSApply(doc,"//li[@class='team-name']",xmlValue)
scores
library(jsonlite)
jsonData<fromJSON("https://api.github.com/users/jtleek/repos")
names(jsonData)
jsonData$name
names(jsonData$owner)
jsonData$owner$login
#Writing data frames to JSON
myjson<-toJSON(iris,pretty=TRUE)
cat(myjson)
#Convert back to JSON
iris2<-fromJSON(myjson)
head(iris2)
library(data.table)
DF=data.frame(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))
head(DF,3)
DT=data.table(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))head(DT,3)
# See all data tables in Memory
tables()
# Subsetting rows
DT[2,]
DT[DT$y=="a",] #选出y=a的
DT[c(2,3)] #选出行12,列123
# Calculating values for variables with expressions
DT[,list(mean(x),sum(z))] #返回x的mean,z的sum两个值
# Adding new columns
DT[,w:=z^2]
# 多重操作,tmp意指中间变量
DT[,m:={tmp<-(x+z); log2(tmp+5)}]
# plyr like operations
DT[,a:=x>0] #增加一个变量 true false
DT[,b:=mean(x+w),by=a] #by语句
# Special Variable
# .N An integer, length 1, containing the number of elements of a factor level
set.seed(123);
DT<-data.table(x=sample(letters[1:3],1E5,TRUE))
DT[, .N,by=x]
# Keys (重要)
DT<-data.table(x=rep(c("a","b","c"),each=100),y=rnorm(300))
setkey(DT,x)
DT['a']
# Fread指令 Fast reading
big_df<-data.frame(x=rnorm(1E6),y=rnorm(1E6))
file<-tempfile()write.table(big_df,file=file,row.names=FALSE,col.names=TRUE,sep="\t",quote=FALSE)
system.time(fread(file))
This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
plot(cars)
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).